Enhancing the light olefin selectivity of an iron-based Fischer–Tropsch synthesis catalyst by modification with CTAB

2018 
The effects of the surfactant hexadecyltrimethylammonium bromide (CTAB) on the catalytic performance of a manganese-promoted iron (FeMn) catalyst for the Fischer–Tropsch to olefin (FTO) reaction were investigated. The use of the CTAB-assisted FeMn catalyst resulted in the production of light olefin (C2–4) selectivity of up to 55.45% with a ratio of olefin to paraffin among the C2–C4 hydrocarbons as high as 7.75 under industrially relevant conditions (320 °C, 1.0 MPa, H2/CO ratio of 1.5 (v/v), GHSV = 4200 h−1). The characterization results indicate that CTAB has a great influence on the structure, composition, chemical state, and catalytic performance of the iron-based catalyst. Most interestingly, a greater amount of Mn promoter was found to be dispersed on the surface of α-Fe2O3, rather than being dissolved into the α-Fe2O3 lattice when CTAB was employed, which contributed towards enhancing the promotional effects of the Mn promoter, leading to the formation of certain surface-specific activity sites.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    4
    Citations
    NaN
    KQI
    []