Sulfonation of Lactobacillus plantarum WLPL04 exopolysaccharide amplifies its antioxidant activities in vitro and in a Caco-2 cell model

2019 
ABSTRACT Exopolysaccharide (EPS) of Lactobacillus plantarum WLPL04 and its sulfated EPS were systematically investigated for their antioxidant activities and effects on protecting the oxidative damage of Caco-2 cells from H 2 O 2 . Exopolysaccharide was successfully sulfonated from purified EPS as confirmed by Fourier-transform infrared spectroscopy, and the degree of sulfonation was 0.30. Both EPS and sulfated EPS showed antioxidant activities in vitro determined by 1,1-diphenyl-2-picrylhydrazyl, superoxide, and hydroxyl radical scavenging tests, and those activities of sulfated EPS were significantly enhanced at 1,000 μg/mL. Cell viabilities of Caco-2 in the range of 1 to 100 μg/mL of EPS and sulfated EPS showed no significant difference. In H 2 O 2 -damaged Caco-2 cells models, EPS and sulfated EPS significantly inhibited the enhancement of reactive oxygen species and malondialdehyde levels, and sulfated EPS enhanced the effects by 40.86% and 61.11% when compared with the purified EPS at the same concentration of 100 μg/mL, respectively. For the activities of antioxidant-related enzymes (superoxide dismutase, catalase, and glutathione peroxidase) and expression of genes ( SOD2 , GPX2 , MT1M ) on Caco-2 cells, strong protection abilities against the oxidative stress were displayed from both EPS and sulfated EPS, and sulfated EPS exhibited significant enhancement as compared with either EPS or control groups. In summary, sulfonation is an effective strategy for improving the antioxidant activities of EPS from L. plantarum WLPL04 in vitro and on Caco-2 cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    9
    Citations
    NaN
    KQI
    []