A Logic Compatible 4T Dual Embedded DRAM Array for In-Memory Computation of Deep Neural Networks

2019 
Modern deep neural network (DNN) systems evolved under the ever-increasing demands of handling more complex and computation-heavy tasks. Traditional hardware designed for such tasks had larger size memory and power consumption issue due to extensive on/off-chip memory access. In-memory computing, one of the promising solutions to resolve the issue, dramatically reduced memory access and improved energy efficiency by utilizing the memory cell to function as both a data storage and a computing element. Embedded DRAM (eDRAM) is one of the potential candidates for in-memory computation. Its minimal use of circuit components and low static power consumption provided design advantage while its relatively short retention time made eDRAM unsuitable for certain applications. This work introduces a dot-product processing macro using eDRAM array and explores its capability as an in-memory computing processing element. The proposed architecture implemented a pair of 2T eDRAM cells as a processing unit that can store and operate with ternary weights using only four transistors. Besides, we investigated a method to maximize the retention time in conjunction with analyzing the device mismatch. An input/weight bit-precision reconfigurable 4T eDRAM processing array shows the energy efficiency of 1.81fJ/OP (including refresh energy) when it operates with binary inputs and ternary weights.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    9
    Citations
    NaN
    KQI
    []