Radiomics Features of 18F-Fluorodeoxyglucose Positron-Emission Tomography as a Novel Prognostic Signature in Colorectal Cancer.

2021 
The aim of this study was to investigate the prognostic value of radiomics signatures derived from 18F-fluorodeoxyglucose (18F-FDG) positron-emission tomography (PET) in patients with colorectal cancer (CRC). From April 2008 to Jan 2014, we identified CRC patients who underwent 18F-FDG-PET before starting any neoadjuvant treatments and surgery. Radiomics features were extracted from the primary lesions identified on 18F-FDG-PET. Patients were divided into a training and validation set by random sampling. A least absolute shrinkage and selection operator Cox regression model was applied for prognostic signature building with progression-free survival (PFS) using the training set. Using the calculated radiomics score, a nomogram was developed, and its clinical utility was assessed in the validation set. A total of 381 patients with surgically resected CRC patients (training set: 228 vs. validation set: 153) were included. In the training set, a radiomics signature labeled as a rad_score was generated using two PET-derived features, such as gray-level run length matrix long-run emphasis (GLRLM_LRE) and gray-level zone length matrix short-zone low-gray-level emphasis (GLZLM_SZLGE). Patients with a high rad_score in the training and validation set had a shorter PFS. Multivariable analysis revealed that the rad_score was an independent prognostic factor in both training and validation sets. A radiomics nomogram, developed using rad_score, nodal stage, and lymphovascular invasion, showed good performance in the calibration curve and comparable predictive power with the staging system in the validation set. Textural features derived from 18F-FDG-PET images may enable detailed stratification of prognosis in patients with CRC.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    1
    Citations
    NaN
    KQI
    []