Study on the Aseismic Performance of the Slope Supported by Energy-consumption Double-limb Anti-slide Piles

2019 
In order to improve the seismic behavior of the existing rigid anti-slide piles, a new type of energy-consumption double-limb anti-slide pile was proposed. The new pile is composed of a main pile limb, an auxiliary pile limb and some energy-consumption connecting rods, which can significantly increase the energy dissipation of the slope and its supporting system during earthquake. Three numerical models of s lopes, which are non-supported slope, traditional rigid anti-slide pile supported slope and new energy-consumption double-limb anti-slide piles supported slope, were established respectively by Flac3D finite difference software. The deformation, shear strain increment, point safety factor and earth pressure behind piles of each slope model under earthquake were compared and analyzed. The results is how that the horizontal displacement of the slope supported by energy-consumption double-limb anti-slide piles is similar to that supported by rigid anti-slide piles with the same cross-section, but the horizontal displacement of the soil behind the piles is larger, which increases the dissipation of the seismic input energy. The vertical displacement of the slope supported by energy-consumption double-limb anti-slide piles is smaller than the slope supported by rigid anti-slide piles, which can effectively control the overtopping failure of the slope. The energy-consumption connecting rods yield continuously and plastic deformation occurs during earthquake, which dissipate a lot of energy. Meanwhile, the deformation of the main pile limb is reduced, and the overall safety of the anti-slide pile is guaranteed. The energy-consumption double-limb anti-slide piles can significantly reduce the shear strain and earth pressure behind piles, and improve the point safety factor of the slope supported by it, which have better seismic performance than the rigid anti-slide piles, and can significantly improve the seismic stability of the slope.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []