Carbon star formation as seen through the non-monotonic initial-final mass relation

2020 
The initial–final mass relation (IFMR) links the birth mass of a star to the mass of the compact remnant left at its death. While the relevance of the IFMR across astrophysics is universally acknowledged, not all of its fine details have yet been resolved. A new analysis of a few carbon–oxygen white dwarfs in old open clusters of the Milky Way led us to identify a kink in the IFMR, located over a range of initial masses, 1.65 ≲ Mi/M⊙ ≲ 2.10. The kink’s peak in white dwarf mass of about 0.70−0.75 M⊙ is produced by stars with Mi ≈ 1.8−1.9 M⊙, corresponding to ages of about 1.8−1.7 Gyr. Interestingly, this peak coincides with the initial mass limit between low-mass stars that develop a degenerate helium core after central hydrogen exhaustion, and intermediate-mass stars that avoid electron degeneracy. We interpret the IFMR kink as the signature of carbon star formation in the Milky Way. This finding is critical to constraining the evolution and chemical enrichment of low-mass stars, and their impact on the spectrophotometric properties of galaxies. An analysis of the relation between a star’s initial mass and its final mass (as a white dwarf) reveals a kink in the initial mass range 1.65–2.10 M⊙. This kink appears to correspond to the minimum mass required for carbon star formation in the Milky Way at solar metallicity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    19
    Citations
    NaN
    KQI
    []