Cisplatin resistance of NSCLC cells involves upregulation of visfatin through activation of its transcription and stabilization of mRNA.

2022 
Non-small cell lung cancer (NSCLC) is one of the prevalent and deadly cancers worldwide. Cisplatin (CDDP) has been used as a standard adjuvant therapy for advanced NSCLC patients, while chemoresistance is one of the most challenging problems to limit its clinical application. Our data showed that the expression of visfatin was significantly increased in CDDP resistant NSCLC cells as compared with that in their parental cells, while knockdown of visfatin or its neutralization antibody can restore the CDDP sensitivity of resistant NSCLC cells. The upregulation of visfatin in CDDP resistant NSCLC cells was due to the increased mRNA stability and promoter activity. Further, we found that signal transducer and activator of transcription 3 (STAT3), which was increased in chemoresistant cells, can increase the transcription of visfatin. While tristetraprolin (TTP), which can decease mRNA stability of visfatin, was decreased in chemoresistant cells. Inhibition of STAT3 or over expression of TTP can restore CDDP sensitivity of resistant NSCLC cells. Collectively, our data showed that STAT3 and TTP-regulated expression of visfatin was involved in CDDP resistance of NSCLC cells. It indicated that targeted inhibition of visfatin should be a potential approach to overcome CDDP resistance of NSCLC treatment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    0
    Citations
    NaN
    KQI
    []