Methanol steam reforming microreactor with novel 3D-Printed porous stainless steel support as catalyst support

2020 
Abstract In order to study the methanol steam reforming performance of the 3D-printed porous support for hydrogen production, three dimensional (3D) printing technology was proposed to fabricate porous stainless steel supports with body-centered cubic structure (BCCS) and face-centered cubic structure (FCCS). Catalyst loading strength of the 3D-printed porous stainless steel supports was studied. Moreover, methanol steam reforming performance of different 3D-printed porous supports for hydrogen production was experimentally investigated by changing reaction parameters. The results show that the 3D-printed porous stainless steel supports with BCCS and FCCS exhibit better catalyst loading strength, and can be used in the microreactor for methanol steam reforming for hydrogen production. Compared with 90 pores per inch (PPI) Fe-based foam support, 3D-printed porous stainless steel supports with FCCS and BCCS show the similar methanol steam reforming performance for hydrogen production in the condition of 6500 mL/(g·h) gas hourly space velocity (GHSV) with 360 °C reaction temperature. This work provides a new idea for the structural design and fabrication of the porous support for methanol steam reforming microreactor for hydrogen production.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    11
    Citations
    NaN
    KQI
    []