Phase Engineering of Cesium Manganese Bromides Nanocrystals with Color-Tunable Emission

2021 
For display applications, it is highly desirable to obtain tunable red/green/blue emission. However, lead-free perovskite nanocrystals (NCs) generally exhibit broadband emission with poor color purity. Herein, we developed a unique phase transition strategy to engineer the emission color of lead-free cesium manganese bromides NCs and we can achieve a tunable red/green/blue emission with high color purity in these NCs. Such phase transition can be triggered by isopropanol: from one dimensional (1D) CsMnBr3 NCs (red-color emission) to zero dimensional (0D) Cs3 MnBr5 NCs (green-color emission). Furthermore, in a humid environment both 1D CsMnBr3 NCs and 0D Cs3 MnBr5 NCs can be transformed into 0D Cs2 MnBr4 ⋅2 H2 O NCs (blue-color emission). Cs2 MnBr4 ⋅2 H2 O NCs could inversely transform into the mixture of CsMnBr3 and Cs3 MnBr5 phase during the thermal annealing dehydration step. Our work highlights the tunable optical properties in single component NCs via phase engineering and provides a new avenue for future endeavors in light-emitting devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    4
    Citations
    NaN
    KQI
    []