The pharmacodynamic effect of terlipressin versus high-dose octreotide in reducing hepatic venous pressure gradient: a randomized controlled trial

2021 
Background Vasoactive drugs can reduce portal venous pressure and control variceal bleeding. However, few studies have explored the hemodynamic effects of terlipressin and high-dose octreotide in such patients. Our purpose was to evaluate the hemodynamic changes and safety of using terlipressin and high-dose octreotide in patients with decompensated liver cirrhosis. Methods A multi-center randomized controlled trial was conducted. Cirrhotic patients with a history of variceal bleeding were included. Terlipressin or high-dose octreotide was administered during the procedure of measuring hepatic venous pressure gradient (HVPG). Hemodynamic parameters and symptoms were recorded. Results A total of 88 patients were included. HVPG was significantly reduced at 10, 20, and 30 min after drug administration in the terlipressin group (16.3±6.4 vs. 14.7±5.9, 14.0±6.1, and 13.8±6.1, respectively, P<0.001) and the high-dose octreotide group (17.4±6.6 vs. 15.1±5.8, 15.3±6.2, and 16.1±6.0, respectively P<0.01). Decreased heart rate and increased mean arterial pressure were more often observed in the terlipressin group. The overall response rates were not significantly different between the groups (52.8% vs. 44.8%, P=0.524). The terlipressin group had significantly higher response rates at 30 min compared to the high-dose octreotide group in those with alcoholic liver cirrhosis [6/6 (100%) vs. 0/4 (0%), P=0.005]. The incidence of adverse drug events was rare and similar in the two groups. Conclusions Both terlipressin and high-dose octreotide were effective and safe for reducing HVPG. The pharmacodynamic effect of terlipressin persisted longer. The terlipressin group had higher response rates in those with alcoholic cirrhosis (trial number: NCT02119884).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    0
    Citations
    NaN
    KQI
    []