Online Monitoring of the Osiris Reactor with the Nucifer Neutrino Detector

2016 
The detection of electron antineutrinos emitted in the decay chains of the fission products in nuclear reactors, combined with reactor core simulations, provides an efficient tool to assess both the thermal power and the fissile content of the whole nuclear core. This new information could be used by the International Agency for Atomic Energy (IAEA) to enhance the Safeguards of civil nuclear reactors. We report the first results of the Nucifer experiment demonstrating the concept of "neutrinometry" at the pre-industrialized stage. A novel detector has been designed to meet requirements discussed with the IAEA for the last ten years as well as international nuclear safety standards. Nucifer has been deployed at only 7.2m away from the Osiris research reactor core (70 MW) operating at the Saclay research center of the French Alternative Energies and Atomic Energy Commission (CEA). We describe the performances of the 1 m3 detector remotely operating at a shallow depth equivalent to 12m of water and under intense background radiation conditions due to the very short baseline. We present the first physics results, based on 145 (106) days of data with reactor ON (OFF), leading to the detection of 40760 electron antineutrino candidates. The mean number of detected antineutrinos is 281 (7) neutrino/day, to be compared with the prediction 272 (23) neutrino/day. As a first societal application we quantify, on the basis of our data, how antineutrinos could be used for the Plutonium Management and Disposition Agreement.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    77
    Citations
    NaN
    KQI
    []