Adversarial Evasion-Resilient Hardware Malware Detectors

2018 
Machine learning offers tantalizing possibilities in computing and autonomous systems: data driven components and systems are trained to learn their environment and offer decisions comparable or surpassing those of humans. However, adversaries can learn the behavior of classifiers and construct adversarial examples that cause them to make wrong decisions, with potentially disastrous consequences. We explore this space in the context of Hardware Malware Detectors (HMDs), which have recently been proposed as a defense against the proliferation of malware. These detectors use low-level features, that can be collected by the hardware performance monitoring units on modern CPUs to detect malware as a computational anomaly. An adversary can reverse engineer existing HMDs effectively and use the reverse engineered model to create malware that evades detection. To address this critical problem, we developed evasion-resilient detectors that leverage recent results in adversarial machine learning to provide a theoretically quantifiable advantage in resilience to reverse engineering and evasion. Specifically, these detectors use multiple base detectors and switch between them stochastically, providing protection against reverse engineering and therefore evasion. The detectors rely on diversity of the baseline classifiers and their evasion advantage correlates with how often they disagree. Thus, it's critical to study how correlated the decisions from different baseline detectors are: a characteristic called transferability. We study transferability across different classifier algorithms and internal settings discovering that non-differentiable algorithms make the best candidates for operation in adversarial settings.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    5
    Citations
    NaN
    KQI
    []