Tryptanthrin suppresses double-stranded RNA-induced CXCL10 expression via inhibiting the phosphorylation of STAT1 in human umbilical vein endothelial cells.

2021 
Abstract Tryptanthrin is a bioactive component of indigo plants such as Polygonum tinctrorium and known to have an anti-inflammatory activity. The aim of this study was to investigate the effects of tryptanthrin on Toll-like receptor 3 (TLR3)-mediated cytokine and chemokine expression in human umbilical vein endothelial cells (HUVEC). Herein, we found that tryptanthrin suppressed the expression of CXCL10 in HUVEC upon stimulation with a TLR3 ligand polyinosinic-polycytidylic acid (poly IC). Tryptanthrin did not inhibit poly IC-induced activation of interferon regulatory factor 3 (IRF3) or the mRNA expression of interferon (IFN)-β, while it significantly suppressed the expression of RIG-I, MDA5, and classical IFN-stimulated genes (ISGs). Tryptanthrin attenuated the phosphorylation and nuclear translocation of STAT1 in HUVEC stimulated with not only poly IC but also recombinant IFN-β. These results suggested that tryptanthrin inhibited poly IC-induced expression of CXCL10 and ISGs via suppressing the activation of STAT1 in HUVEC. Our findings indicate that tryptanthrin may be useful for regulating TLR3-mediated vascular inflammation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    3
    Citations
    NaN
    KQI
    []