Intrathecal rapamycin attenuates morphine-induced analgesic tolerance and hyperalgesia in rats with neuropathic pain

2015 
Repeated and long-term administration of opioids is often accompanied by the initiation of opioid-induced analgesic tolerance and hyperalgesia in chronic pain patients. Our previous studies showed that repeated intrathecal morphine injection activated the mammalian target of rapamycin complex 1 (mTORC1) in spinal dorsal horn neurons and that blocking this activation prevented the initiation of morphine-induced tolerance and hyperalgesia in healthy rats. However, whether spinal mTORC1 is required for morphine-induced tolerance and hyperalgesia under neuropathic pain conditions remains elusive. We here observed the effect of intrathecal infusion of rapamycin, a specific mTORC1 inhibitor, on morphine-induced tolerance and hyperalgesia in a neuropathic pain model in rats induced by the fifth lumbar spinal nerve ligation (SNL). Continuous intrathecal infusion of morphine for one week starting on day 8 post-SNL led to morphine tolerance demonstrated by morphine-induced reduction in maximal possible analgesic effect (MPAE) to tail heat stimuli and ipsilateral paw withdrawal threshold (PWT) to mechanical stimuli in SNL rats. Such reduction was attenuated by co-infusion of rapamycin. Co-infusion of rapamycin also blocked morphine tolerance demonstrated by attenuation of morphine-induced reduction in MPAE in sham rats and morphine-induced hyperalgesia demonstrated by the reverse of morphine-induced reduction in PWT on both sides of sham rats and on the contralateral side of SNL rats. The results suggest that mTORC1 inhibitors could serve as promising medications for use as adjuvants with opioids in clinical neuropathic pain management.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    20
    Citations
    NaN
    KQI
    []