Exploring Efficient Architectures on Remote In-Memory NVM over RDMA

2021 
Efficiently accessing remote file data remains a challenging problem for data processing systems. Development of technologies in non-volatile dual in-line memory modules (NVDIMMs), in-memory file systems, and RDMA networks provide new opportunities towards solving the problem of remote data access. A general understanding about NVDIMMs, such as Intel Optane DC Persistent Memory (DCPM), is that they expand main memory capacity with a cost of multiple times lower performance than DRAM. With an in-depth exploration presented in this paper, however, we show an interesting finding that the potential of NVDIMMs for high-performance, remote in-memory accesses can be revealed through careful design. We explore multiple architectural structures for accessing remote NVDIMMs in a real system using Optane DCPM, and compare the performance of various structures. Experiments are conducted to show significant performance gaps among different ways of using NVDIMMs as memory address space accessible through RDMA interface. Furthermore, we design and implement a prototype of user-level, in-memory file system, RIMFS, in the device DAX mode on Optane DCPM. By comparing against the DAX-supported Linux file system, Ext4-DAX, we show that the performance of remote reads on RIMFS over RDMA is 11.44 higher than that on a remote Ext4-DAX on average. The experimental results also show that the performance of remote accesses on RIMFS is maintained on a heavily loaded data server with CPU utilization as high as 90%, while the performance of remote reads on Ext4-DAX is significantly reduced by 49.3%, and the performance of local reads on Ext4-DAX is even more significantly reduced by 90.1%. The performance comparisons of writes exhibit the same trends.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    0
    Citations
    NaN
    KQI
    []