New parameter of the second half of the P-wave, P-wave duration and atrial conduction times predict atrial fibrillation during electrophysiological studies.

2021 
OBJECTIVE Several P-wave parameters reflect atrial conduction characteristics and have been used to predict atrial fibrillation (AF). The aim of this study was to determine the relationship between maximum P-wave duration (PMax) and new P-wave parameters, with atrial conduction times (CT), and to assess their predictive value of AF during electrophysiological studies (AF-EPS). SUBJECTS AND METHODS This was a cross-sectional study in 153 randomly selected patients aged 18-70 years, undergoing EPS. The patients were divided into 2 groups designated as no AF-EPS and AF-EPS, depending on whether AF occurred during EPS or not. Different P-wave parameters and atrial CT were compared for both study groups. Subsequently, the predictive value of the P-wave parameters and the atrial CT for AF-EPS was evaluated. RESULTS The values of CT, PMax, and maximum Ppeak-Pend interval (Pp-eMax) were significantly higher in patients with AF-EPS. Almost all P-wave parameters were correlated with the left CT. PMax, Pp-eMax, and CT were univariate and multivariate predictors of AF-EPS. The largest ROC area was presented by interatrial CT (0.852; p < 0.001; cutoff value: ≥82.5 ms; sensitivity: 91.1%; specificity: 81.1%). Pp-eMax showed greater sensitivity (79.5%) to discriminate AF-EPS than PMax (72.7%), but the latter had better specificity (60.4% vs. 41.5%). CONCLUSIONS Left atrial CT were directly and significantly correlated with PMax and almost all the parameters of the second half of the P-wave. CT, PMax, and Pp-eMax (new parameter) were good predictors of AF-EPS, although CT did more robustly.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    0
    Citations
    NaN
    KQI
    []