Abstract 75: Anti-tumor activity of a novel selenonucleoside via targeting Skp2 degradation in paclitaxel-resistant prostate cancer

2019 
Prostate cancer (PC) is the most common disease in men over age 50, and its prevalence rate has been gradually increasing since 1980. Taxane-derived anticancer agents are the primary agents used to treat metastatic prostate cancer patients; however, the side effects and acquired drug resistance limit the success of these therapies. Because there is no specific treatment for paclitaxel-resistant prostate cancer, it is necessary to develop new targets and therapeutic strategies to overcome the acquired resistance. In this study, the antitumor activity of a novel selenonucleoside (4′-selenofuranosyl-2,6-dichloropurine, LJ-2618), a third-generation nucleoside, and its plausible mechanisms of action in paclitaxel-resistant prostate cancer (PC-3-Pa) cells were investigated. The established PC-3-Pa cells exhibited over 100-fold resistance against paclitaxel compared to the paclitaxel-sensitive PC-3 cells. LJ-2618, however, effectively inhibited the proliferation of both cell lines with similar IC50values in vitro. In PC-3-Pa cells, the activated PI3K/Akt signaling pathway was suppressed by LJ-2618 treatment. In addition, Skp2 was found to be over-expressed in paclitaxel-resistant cells, and the transfection of Skp2 siRNA recovered the sensitivity of paclitaxel in PC-3-Pa cells. Furthermore, LJ-2618 significantly down-regulated Skp2 expression in PC-3-Pa cells by promoting degradation and inducing destabilization of Skp2, which triggers G2/M cell cycle arrest. In a xenograft mouse model implanted with PC-3-Pa cells, LJ-2618 (3 or 10 mg/kg) effectively inhibited tumor growth with the enhancement of Skp2 degradation and induction of p27 expression in tumor tissues. These findings suggest that LJ-2618 may have a potential for overcoming paclitaxel resistance via promoting Skp2 degradation and stabilizing p27 expression in PC-3-Pa cells. Therefore, the novel selenonucleoside LJ-2618 may lead to the development of a new treatment strategy for patients with paclitaxel-resistant, castration-resistant prostate cancer. This study was supported by a National Research Foundation of Korea (NRF) Grant funded by the Korean Government (NRF-2016M3A9B6903499). Citation Format: Woong Sub Byun, Minkyung Jin, Jinha Yu, Won Kyung Kim, Lak Shin Jeong, Sang Kook Lee. Anti-tumor activity of a novel selenonucleoside via targeting Skp2 degradation in paclitaxel-resistant prostate cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 75.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []