Construction of 3-D arterial volume meshes from magnetic resonance angiography

1996 
AbstractFinite element methods are well-suited for solving problems in arterial fluid dynamics; primarily due to their ability to handle flows in complex geometries. However, in order to use these computational methods to develop realistic models of pulsatile flow in intracranial arteries and associated aneurysms, it is necessary to construct a 3-D mesh, or grid, that accurately duplicates the arterial geometry of interest In this paper, we present an efficient method to accurately develop realistic 3-D computational meshes of human intracranial arteries and aneurysms from serial magnetic resonance angiography images. However, these techniques may be applied to any other form of imaging data including computed tomographic angiography. First, raw grayscale images are segmented, converted to their binary form and arterial contours are extracted at each image slice. Next, the arterial contours are stacked and cubic splines are computed along the axial direction. This creates an affect similar to smooth integ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    16
    Citations
    NaN
    KQI
    []