Weak anion exchange chromatographic profiling of glycoprotein isoforms on a polymer monolithic capillary

2012 
Abstract High resolution separation of intact glycoproteins, which is essential for many aspects such as finger-print profiling, represents a great challenge because one glycoprotein can exhibit many isoforms with close physicochemical properties. Monolithic columns are important separation media for the separation of intact proteins due to its significant advantages such as easy preparation, high column efficiency and high permeability. However, there are few reports on high resolution profiling of intact glycoproteins. Herein, we presented a polymeric weak anion exchange (WAX) monolithic capillary for high resolution separation of glycoprotein isoforms. A base monolith was first prepared through ring-opening polymerization between tris(2,3-epoxypropyl)isocyanurate and tri(2-aminoethyl), and then modified through reacting with ammonia aqueous solution to convert the unreacted epoxide moieties into primary amino groups. The prepared monolithic capillary was characterized in terms of morphology, pore size, hydrophilicity and reproducibility. The obtained WAX monolithic capillary exhibited desired through-pores and mesopore size, stable skeleton and hydrophilic nature. The performance of the capillary was evaluated using several typical glycoproteins such as α 1 -acid glycoprotein (AGP) as mode analytes. Effects of the experimental parameters on the glycoform resolution were investigated. Under the optimized separation conditions, the tested glycoproteins were all resolved into distinct glycoforms. A comparative investigation with capillary zone electrophoresis (CZE) revealed that this WAX column provided better selectivity as more isoforms were observed, although the resolution of some glycoprotein isoforms decreased.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    26
    Citations
    NaN
    KQI
    []