SURFACE PROPERTIES AND CATALYTIC PERFORMANCE OF ACTIVATED CARBON FIBERS SUPPORTED TiO2 PHOTOCATALYST

2008 
Activated carbon fibers supported TiO2 photocatalyst (TiO2/ACF) in felt-form was successfully prepared with a dip-coating process using organic silicon modified acrylate copolymer as a binder followed by calcination at 500°C in a stream of Ar gas. The photocatalyst was characterized by SEM, XRD, XPS, FTIR, and BET surface area. Most of carbon fibers were coated with uniformly distributed TiO2 clusters of nearly 100 nm. The loaded TiO2 layer was particulate for the organic binder in the compact film was carbonized. According to XPS and FTIR analysis, amorphous silica in carbon grains was synthesized after carbonizing organic silicon groups, and the Ti–O–Si bond was formed between the interface of loaded TiO2 and silica. Additionally, the space between adjacent carbon fibers still remained unfilled after TiO2 coating, into which both UV light and polluted solutions could penetrate to form a three-dimensional environment for photocatalytic reactions. While loaded TiO2 amount increased to 456 mg TiO2/1 g ACF, the TiO2/ACF catalyst showed its highest photocatalytic activity, and this activity only dropped about 10% after 12 successive runs, exhibiting its high fixing stability of coated TiO2.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    5
    Citations
    NaN
    KQI
    []