Gene characterization and transcription analysis of two new ammonium transporters in pear rootstock ( Pyrus betulaefolia )

2016 
Ammonium is the primarily nitrogen source for plant growth, but the molecular basis of ammonium acquisition in fruit species remains poorly understood. In this study, we report on the characterization of two new ammonium transporters (AMT) in the perennial tree Pyrus betulaefolia. In silico analyses and yeast complementation assays revealed that both PbAMT1;3 and PbAMT1;5 can be classified in the AMT1 sub-family. The specific expression of PbAMT1;3 in roots and of PbAMT1;5 in leaves indicates that they have diverse functions in ammonium uptake or transport in P. betulaefolia. Their expression was strongly influenced by ammonium availability. In addition, the transcript level of PbAMT1;5 was significantly affected by the diurnal cycle and senescence hormones. They conferred the ability to uptake nitrogen to the yeast strain 31019b; however, the 15NH4 + uptake kinetics of PbAMT1;3 were different from those of PbAMT1;5. Indeed, PbAMT1;3 had a higher affinity for 15NH4 +, and pH changes were associated with this substrates’ transport in yeast. The present study provides basic gene features and transcriptional information for the two new members of the AMT1 sub-family in P. betulaefolia and will aid in decoding the precise roles of AMTs in P. betulaefolia physiology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    11
    Citations
    NaN
    KQI
    []