Functional loss of a non-canonical BCOR-PRC1.1 complex accelerates SHH-driven medulloblastoma formation

2020 
Medulloblastoma is a childhood brain tumor arising from the developing cerebellum. In Sonic Hedgehog (SHH)- subgroup medulloblastoma, aberrant activation of SHH signaling causes increased proliferation of granule neuron progenitors (GNPs) and predisposes these cells to tumorigenesis. A second, cooperating genetic hit is often required to push these hyperplastic cells to malignancy and confer mutation-specific characteristics associated with oncogenic signaling. Somatic loss-of-function mutations of the transcriptional co-repressor BCOR are recurrent and highly enriched in SHH-medulloblastoma. To investigate BCOR as a putative tumor suppressor, we used a germline genetically engineered mouse model to delete exons 9/10 of Bcor (BcorΔE9-10) in GNPs during development. This leads to reduced expression of C-terminally truncated BCOR (BCORΔE9-10). While BcorΔE9-10 alone did not promote tumorigenesis or affect GNP differentiation, BcorΔE9-10 combined with loss of the SHH- receptor gene Ptch1 resulted in highly penetrant medulloblastomas. In Ptch1+/-;BcorΔE9-10 tumors, the growth factor gene Igf2 was aberrantly upregulated, and ectopic Igf2 overexpression was sufficient to drive tumorigenesis in Ptch1+/- GNPs. BCOR directly regulates Igf2, likely through the PRC1.1 complex; the repressive histone mark H2AK119Ub is decreased at the Igf2 promoter in Ptch1+/-;BcorΔE9-10 tumors. Overall, our data suggests that BCOR-PRC1.1 disruption leads to Igf2 overexpression, which transforms preneoplastic cells to malignant tumors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    72
    References
    0
    Citations
    NaN
    KQI
    []