First measurement of the Hubble constant from a dark standard siren using the Dark Energy Survey galaxies and the LIGO/Virgo binary-black-hole merger GW170814

2019 
We present a multi-messenger measurement of the Hubble constant H_0 using the binary-black-hole merger GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy Survey (DES). The luminosity distance is obtained from the gravitational wave signal detected by the LIGO/Virgo Collaboration (LVC) on 2017 August 14, and the redshift information is provided by the DES Year 3 data. Black-hole mergers such as GW170814 are expected to lack bright electromagnetic emission to uniquely identify their host galaxies and build an object-by-object Hubble diagram. However, they are suitable for a statistical measurement, provided that a galaxy catalog of adequate depth and redshift completion is available. Here we present the first Hubble parameter measurement using a black-hole merger. Our analysis results in $H_0 = 75.2^{+39.5}_{-32.4}~{\rm km~s^{-1}~Mpc^{-1}}$, which is consistent with both SN Ia and CMB measurements of the Hubble constant. The quoted 68% credible region comprises 60% of the uniform prior range [20,140] ${\rm km~s^{-1}~Mpc^{-1}}$. This result shows that even a single dark siren can provide a constraint on the Hubble constant, albeit a weak one. Future combinations of many sirens will lead to improved constraints. A multifold increase in the LVC event detection rate is expected in the coming years, and this bodes well since future combinations of many additional sirens will lead to improved constraints.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    173
    Citations
    NaN
    KQI
    []