Performance studies on composite gel polymer electrolytes for rechargeable magnesium battery application

2011 
Abstract Effect of micron-sized MgO particles dispersion on poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF–HFP) based magnesium-ion (Mg 2+ ) conducting gel polymer electrolyte has been studied using various electrical and electrochemical techniques. The composite gel films are free-standing and flexible with enough mechanical strength. The optimized composition with 10 wt% MgO particles offers a maximum electrical conductivity of ∼6×10 −3  S cm −1 at room temperature (∼25°C). The Mg 2+ ion conduction in gel film is confirmed from cyclic voltammetry, impedance spectroscopy and transport number measurements. The applicability of the composite gel electrolyte to a rechargeable battery system has been examined by fabricating a prototype cell consisting of Mg (or Mg–MWCNT composite) and V 2 O 5 as negative and positive electrodes, respectively. The rechargeability of the cell has been improved, when Mg metal was substituted by Mg–MWCNT composite as negative electrode.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    39
    Citations
    NaN
    KQI
    []