Structured Graph Learning for Scalable Subspace Clustering: From Single View to Multiview.

2021 
Graph-based subspace clustering methods have exhibited promising performance. However, they still suffer some of these drawbacks: they encounter the expensive time overhead, they fail to explore the explicit clusters, and cannot generalize to unseen data points. In this work, we propose a scalable graph learning framework, seeking to address the above three challenges simultaneously. Specifically, it is based on the ideas of anchor points and bipartite graph. Rather than building an n x n graph, where n is the number of samples, we construct a bipartite graph to depict the relationship between samples and anchor points. Meanwhile, a connectivity constraint is employed to ensure that the connected components indicate clusters directly. We further establish the connection between our method and the K-means clustering. Moreover, a model to process multiview data is also proposed, which is linearly scaled with respect to n. Extensive experiments demonstrate the efficiency and effectiveness of our approach with respect to many state-of-the-art clustering methods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    18
    Citations
    NaN
    KQI
    []