Evaluation of N2O emission from rainfed wheat field in northwest agricultural land in China.

2020 
: The net greenhouse gas (NGHG) emissions and net greenhouse gas intensity (NGHGI) were investigated via the determination of nitrous oxide (N2O) emission in loess soil under rainfed winter wheat monocropping system during 3 years of field study in Northwest China. Five treatments were carried out: control (N0), conventional nitrogen (N) application (NCon), optimized N application with straw (SNOpt), optimized N application with straw and 5% of dicyanodiamide (SNOpt + DCD), and optimized N rate of slow release fertilizer with straw (SSRFOpt). Over a 3-year period, the NGHG emissions were achieved 953, 1322, 564, and 1162 kg CO2-eq ha-1, simultaneously, and the NGHGI arrived 158, 223, 86, and 191 kg CO2-eq t-1 grain in NCon, SNOpt, SNOpt + DCD, and SSROpt grain, respectively. Contrasted with conventional farming system, optimized farming methods reduced 32% of N fertilizer use without significant decrease in grain yield, but brought about 38% increase in N2O emissions, up to 28% gained in soil CH4 uptake. Thus, it was observed that the straw incorporation performs noticeable increased in N2O emissions in the winter wheat cropping season. Among the optimized N fertilizer rates compared with the SNOpt treatment, the SNOpt +DCD and SSROpt treatments decreased in N2O emissions by approximately 55% and 13%, respectively. Additionally, the N2O emission factor across over a 3-year period was 0.41 ± 0.08% derived from N fertilizer, and it was half of IPCC default values for upland corps. It is expected possibly due to low precipitation and soil moisture with the monocropping system. The 25% higher in the amount of rainfall (almost 300 mm in 2013-2014) during a cropping season underwent into 1-2-fold increase in N2O emissions from N-fertilized plots. As the statistical differences among annual cumulative emissions coincided with that during winter wheat growing season, it can be concluded that crop growing season is a vital important period for the determination of N2O emissions from under rainfed monocropping system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    2
    Citations
    NaN
    KQI
    []