Reply to "Rapid $^{14}$C excursion at 3372-3371 BCE not observed at two different locations"

2020 
The nuclide $^{14}$C can be produced in the atmosphere by high energy particles and $\gamma$-rays from high-energy phenomena. Through the carbon cycle, some of $^{14}$CO$_2$ produced in the atmosphere can be retained in annual tree rings. Four events of rapid increase of the $^{14}$C content occurred in AD 775, AD 994, BC 660 and BC 3371 were found. Recently, the data of Jull et al. (2020) was inconsistent with our records around BC 3371. We measured our sample again and found the $^{14}$C records are consistent with the value in Wang et al. (2017). Therefore, our $^{14}$C records are robust. The inconsistency may be caused by the difference of calendar ages for the wood samples, or the physical origin of the event. First, crossdating on ring width can be performed only between trees whose growth has the same environmental conditions. Because the master tree-ring for dendrochronology is lack for Chinese trees. The master tree-ring from California has to be used. Therefore, the calendar ages derived from dendrochronology may be not precise. Second, the $^{14}$C even may be not global. One evidence is the variation of $^{14}$C content around AD 1006. The $^{14}$C contents of Californian trees increase 12\textperthousand~ in two years, while Japanese trees show no $^{14}$C increase.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    0
    Citations
    NaN
    KQI
    []