Downregulation of microRNA-199a-5p alleviated lidocaine-induced sensory dysfunction and spinal cord myelin lesions in a rat model.

2021 
Abstract Lidocaine induces neurotoxicity in the spinal cord, but the underlying mechanisms remain unclear. In this study, we evaluated the effects of miR-199a-5p on 10% lidocaine neurotoxicity. Increased expression of miR-199a-5p in the spinal cord of rats treated with 10% lidocaine was assessed by qRT-PCR. Furthermore, after miR-199a-5p antagomir administration, the sensory dysfunction and myelin sheath lesions (evaluated by semithin sections stained with toluidine blue, electron microscopy, g-ratios and myelin thickness) induced by 10% lidocaine were alleviated. Myelin regulatory factor (MYRF), a key molecule of myelin sheath development, was predicted to be a target gene of miR-199a-5p by the TargetScan and miRBase databases. MYRF and its downstream factors myelin basic protein (MBP), proteolipid protein (PLP) and myelin oligodendrocyte glycoprotein (MOG) were significantly decreased after intrathecal 10% lidocaine administration. Moreover, these changes were reversed after miR-199a-5p antagomir administration. FISH-immunofluorescence showed coexpression of miR-199a-5p and MYRF in the spinal cord white matter of rats. A luciferase reporter assay further demonstrated the functional association between miR-199a-5p and MYRF. Overall, miR-199a-5p upregulation is involved in 10% lidocaine-induced spinal cord toxicity through regulation of MYRF. Therefore, downregulating miR-199a-5p expression may be a potential strategy to ameliorate spinal cord neurotoxicity induced by 10% lidocaine.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    0
    Citations
    NaN
    KQI
    []