Tuning the Electronic Structure of Graphene by Molecular Dopants: Impact of the Substrate

2015 
A combination of ultraviolet and X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, and first principle calculations was used to study the electronic structure at the interface between the strong molecular acceptor 1,3,4,5,7,8-hexafluorotetracyano-naphthoquinodimethane (F6TCNNQ) and a graphene layer supported on either a quartz or a copper substrate. We find evidence for fundamentally different charge redistribution mechanisms in the two ternary systems, as a consequence of the insulating versus metallic character of the substrates. While electron transfer occurs exclusively from graphene to F6TCNNQ on the quartz support (p-doping of graphene), the Cu substrate electron reservoir induces an additional electron density flow to graphene decorated with the acceptor monolayer. Remarkably, graphene on Cu is n-doped and remains n-doped upon F6TCNNQ deposition. On both substrates, the work function of graphene increases substantially with a F6TCNNQ monolayer atop, the effect being more pronounced (...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    28
    Citations
    NaN
    KQI
    []