Core-Shell MnO2-SiO2 Nanorods for Catalyzing the Removal of Dyes from Water

2017 
This work presented a novel core-shell MnO2@m-SiO2 for catalyzing the removal of dyes from wastewater. MnO2 nanorods were sequentially coated with polydopamine (PDA) and polyethyleneimine (PEI) forming MnO2@PDA-PEI. By taking advantage of the positively charged amine groups, MnO2@PDA-PEI was further silicificated, forming MnO2@PDA-PEI-SiO2. After calcination, the composite MnO2@m-SiO2 was finally obtained. MnO2 nanorod is the core and mesoporous SiO2 (m-SiO2) is the shell. MnO2@m-SiO2 has been used to degrade a model dye Rhodamine B (RhB). The shell m-SiO2 functioned to adsorb/enrich and transfer RhB, and the core MnO2 nanorods oxidized RhB. Thus, MnO2@m-SiO2 combines multiple functions together. Experimental results demonstrated that MnO2@m-SiO2 exhibited a much higher efficiency for degradation of RhB than MnO2. The RhB decoloration and degradation efficiencies were 98.7% and 84.9%, respectively. Consecutive use of MnO2@m-SiO2 has demonstrated that MnO2@m-SiO2 can be used to catalyze multiple cycles of RhB degradation. After six cycles of reuse of MnO2@m-SiO2, the RhB decoloration and degradation efficiencies were 98.2% and 71.1%, respectively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    17
    Citations
    NaN
    KQI
    []