Rotational effect as the possible cause of the east-west asymmetric crater rims on Ryugu observed by LIDAR data

2020 
Abstract Asteroid 162,173 Ryugu is a rubble-pile asteroid, whose top-shape is compatible with models of deformation by spin up. Rims of major craters on Ryugu have an east–west asymmetric profile; their western crater rims are sharp and tall, while their eastern crater rims are rounded and low. Although there are various possible explanations, we theoretically assess the effect of asteroid rotation as the possible reason for this east–west asymmetry. It is known that the trajectories and fates of ejecta are affected by the rotation. The Coriolis force and the inertial speed of the rotating surface are the factors altering the ejecta trajectories. Consequently, we found that the east–west asymmetric crater rims might be formed as a result of rotation, when the inertial speed of the rotating surface is nearly equal to the first cosmic velocity of the body. In other words, it is possible that the observed east–west asymmetric rims of the Urashima, Cendrillon, and Kolobok craters were formed when Ryugu's rotation period was ~3.6 h.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    2
    Citations
    NaN
    KQI
    []