Alteration of Voltage-Dependent Calcium Channels in Canine Brain during Global Ischemia and Reperfusion

1992 
Summary: Elevated intracellular calcium (iCa2 + ) plays an important role in the pathophysiology of ischemic brain damage. The mechanisms by which iCa2+ increases are uncertain. Recent evidence implicates the voltage-dependent calcium channel (VDCC) as a likely site for the alteration in Ca2 + homeostasis during ischemia. The purpose of this study was to determine whether VDCCs are altered by global ischemia and reperfusion in a canine cardiac arrest, resuscitation model. We employed the radioligand, [3H]PN200-110, to quantitate the equilibrium binding characteristics of the VDCCs in the cerebral cortex. Twenty-five adult beagles were separated into four experimental groups: (a) nonischemic controls, (b) those undergoing 10-min ventricular fibrillation and apnea, (c) those undergoing 10-min ventricular fibrillation and apnea followed by spontaneous circulation and controlled respiration for 2 and (d) 24 h. Brain cortex samples were taken prior to killing of the animal, frozen immediately in liquid nitrogen, and crude synaptosomal membranes isolated by differential centrifugation/filtration. After 10 min of ischemia the maximal binding (Bmax) of [3H]PN200-110 increased to >250% of control values (control Bmax 11.16 ± 0.98; ischemic 28.35 ± 2.78 fmol/mg protein; p < 0.05). Bmax returned to near control values after 2 h of reperfusion but remained significantly greater than the control at 24 h. Although the affinity constant (Kd) (control = 0.12 ± 0.03 nM) appeared to increase with ischemia and normalize with reperfusion, the changes were not statistically significant. We conclude that the binding of [3H]PN200-110 to L-type VDCCs is increased after 10 min of global ischemia/anoxia produced by ventricular fibrillation and apnea in the dog. This change is only partially reversible after 24 h of reperfusion. This study supports the hypothesis that ischemia increases the number of VDCCs in the cell membrane which may allow increased entry of Ca2 + into the cell during ischemia and early reperfusion.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    21
    Citations
    NaN
    KQI
    []