How boiling happens in nanofuel droplets

2018 
We report detailed analyses of evaporation and atomisation characteristics of nanofuel droplets in a contactless environment (acoustic levitation) under external radiative heating. Two base fuels, ethanol and n-dodecane with a significant difference in their respective vapour-pressures, are considered. Nanoparticles (NPs) of cerium oxides (CeO2) are utilised as nano-additives at a dilute particle loading rate (PLR) of 0%-0.5% by weight. Pure ethanol droplets vaporise at a faster rate than pure dodecane droplets and do not exhibit any secondary atomisation. However, pure dodecane droplets exhibit two modes of secondary breakup; Kelvin-Helmholtz instability induced stripping and catastrophic breakup beyond a certain threshold value of the initial droplet size. Nanofuel droplets of ethanol neither exhibit any significant change in the vaporisation rate nor exhibit secondary atomization. Contrarily, dodecane-based nanofuels show enhanced vaporisation due to heat absorption by nanoparticles and consequently di...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    15
    Citations
    NaN
    KQI
    []