Grasping Force Optimization for Multi-fingered Robotic Hands Using Projection and Contraction Methods

2019 
Grasping force optimization of multi-fingered robotic hands can be formulated as a convex quadratic circular cone programming problem, which consists in minimizing a convex quadratic objective function subject to the friction cone constraints and balance constraints of external force. This paper presents projection and contraction methods for grasping force optimization problems. The proposed projection and contraction methods are shown to be globally convergent to the optimal grasping force. The global convergence makes projection and contraction methods well suited to the warm-start techniques. The numerical examples show that the projection and contraction methods with warm-start version are fast and efficient.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    2
    Citations
    NaN
    KQI
    []