Identification of Reference Genes for Quantitative Gene Expression Studies in Pinus massoniana and Its Introgression Hybrid

2019 
qRT-PCR is a powerful molecular research tool to study the regulation of gene expression. However, to accurately calculate gene expression levels, an experiment should include proper reference genes that show no changes in their expression level. Pinus massoniana, P. hwangshanensis, and their introgression hybrid in Mountain Lushan, China, are an ideal model for studying introgression and speciation. Although some research on reference gene selection for P. massoniana has been reported before, no studies on this subject have been performed where P. massoniana and its introgression hybrid were evaluated simultaneously. Here, we investigated ten genes (upLOC, SDH, ACT, EF, TOC75, DMWD, FBOX, PGK1, UBQ, and CL2417C7) identified from transcriptome data of these two taxa for reference gene potential. These ten genes were then screened across multiple tissues such as cone, young and mature stems, and young needles according to qRT-PCR thermal cycling and dissociation. Correlation coefficient, amplification efficiency, and cycle threshold value (Ct) range were applied to evaluate the reliability of each gene. The stability of candidate reference gene expression was calculated using three algorithms: geNorm, NormFinder, and BestKeeper. Base on the reliability and stability, we then offered a list of genes of recommended and not recommended for seven different tissue type and species. Our results demonstrated that different sample lines require different genes as reference to evaluate.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    2
    Citations
    NaN
    KQI
    []