Numerical Investigation and Optimization on Shell Side Performance of A Shell and Tube Heat Exchanger with Inclined Trefoil-Hole Baffles

2019 
In this work, a shell and tube heat exchanger with inclined trefoil-hole baffles (STHX-IT) is proposed, and the numerical simulation is conducted to investigate the flow and heat transfer characteristics. A shell and tube heat exchanger with segmental baffles (STHX-SG) is also studied for the performance comparison. The results show that the heat transfer coefficient and pressure drop of the STHX-IT is averagely lower by 23.89% and 44.19% than those of the STHX-SG, but the heat transfer coefficient per pressure drop is higher by 36.38% on average. Further, the parametric studies of the inclination angle θ, trefoil-hole number n, and baffle cut δ are carried out for the STHX-IT. According to the numerical results, n and δ have more notable influence on shell side performance than θ. In detail, the heat transfer coefficient and pressure drop decrease slightly with θ increasing, and the overall performance is approximately equal; both the heat transfer coefficient and pressure drop decrease with the respective rising of n and δ, but the comprehensive performance shows a growing trend. Considering the synthetic effects of structural parameters, the multi-objective structure optimization using the genetic algorithm combined with the artificial neural networks is fulfilled. As a result, the Pareto front is obtained to characterize the behaviors of the maximum heat transfer rate and minimum pressure drop. The STHX-IT with the θ = 5.38°, n = 6, and δ = 43% is decided as the optimal solution by the TOPSIS method, whose Q/Δp is 2.34 times as much as that of the original STHX-SG.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    4
    Citations
    NaN
    KQI
    []