Monodisperse microspheres with poly(N-isopropylacrylamide) core and poly(2-hydroxyethyl methacrylate) shell.

2010 
Abstract Monodisperse core–shell microspheres, composed of poly( N -isopropylacrylamide) (PNIPAM) core with thermo-responsive swelling/shrinking function and biocompatible poly(2-hydroxyethyl methacrylate) (PHEMA) shell with “open/close” switching function, have been successfully prepared by microfluidic emulsification, free-radical polymerization and atom transfer radical polymerization (ATRP). The effects of grafting time for the ATRP and polyvinyl alcohol (PVA) concentration inside the core on the thermo-responsive behavior of core–shell microspheres are investigated. For the core–shell microspheres prepared with PVA concentration of 2% (w/v) and grafting time of 2 h, the PNIPAM core is in the shrunken state and the solid PHEMA shell protect the whole PNIPAM core at temperatures above the volume phase transition temperature (VPTT); as environmental temperature decreases below the VPTT, the PNIPAM core swells dramatically and the PHEMA shell ruptures a large area. The thermo-responsive function of the core–shell microspheres is reversible and the appearance/recovery of PHEMA shell crack exhibits an “open/close” switching function. Such core–shell microspheres are highly attractive for developing drug delivery systems with both biocompatible and thermo-responsive characteristics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    18
    Citations
    NaN
    KQI
    []