Steady-state kinetic characterization of substrates and metal-ion specificities of the full-length and N-terminally truncated recombinant human methionine aminopeptidases (type 2).

2001 
The steady-state kinetics of a full-length and truncated form of the type 2 human methionine aminopeptidase (hMetAP2) were analyzed by continuous monitoring of the amide bond cleavage of various peptide substrates and methionyl analogues of 7-amido-4-methylcoumarin (AMC) and p-nitroaniline (pNA), utilizing new fluorescence-based and absorbance-based assay substrates and a novel coupled-enzyme assay method. The most efficient substrates for hMetAP2 appeared to be peptides of three or more amino acids for which the values of kcat/Km were approximately 5 × 105 M-1 min-1. It was found that while the nature of the P1‘ residue of peptide substrates dictates the substrate specificity in the active site of hMetAP2, the P2‘ residue appears to play a key role in the kinetics of peptidolysis. The catalytic efficiency of dipeptide substrates was found to be at least 250-fold lower than those of the tripeptides. This substantially diminished catalytic efficiency of hMetAP2 observed with the alternative substrates MetA...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    61
    Citations
    NaN
    KQI
    []