Multi-Promoters Regulated Iron Catalyst with Well-Matching Reverse Water-Gas Shift and Chain Propagation for Boosting CO2 Hydrogenation

2021 
Abstract In this work, multi-promoters, including potassium, manganese and titanium, were incorporated into iron catalyst for improving CO2 hydrogenation and the influences of each promoter were investigated in detail. Besides, the content of each component was optimized to achieve a well-matching tandem catalysis performance between reverse water gas shift (RWGS) reaction and chain propagation reaction. The results showed that the introduction of potassium could improve the RWGS reaction and chain growth capacity by utilizing abundant oxygen vacancy, and strong competitive adsorption. With the further addition of manganese, more active carbides sites with benign dispersion were detected owing to the strong interaction between manganese and iron species. When titanium was added, the catalytic performance of the catalyst was improved by the stronger CO2 adsorption capacity and longer resistance time of reactants. Therefore, the well-matching catalysis between RWGS and chain propagation was achieved on the corresponding K3/FeMn10Ti20 catalyst, achieving C5+ yield as high as 1282.7 g fuel kg cat -1 h -1 at CO2 conversion of 44.9 % and maintaining a rather low by-products selectivity (9.6 % for CO, 12.8 % for CH4).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    0
    Citations
    NaN
    KQI
    []