Probing AGN unification with radiation hydrodynamics simulations of dusty obscuring winds

2013 
Abstract Observational properties of active galactic nucleus are essentially influenced by their winds. The illumination of a parsec-scale, geometrically thin, dusty accretion disk by X-rays, and UV radiation leads to the conversion of such radiation into IR. In result the disk becomes geometrically thick due to pressure of the IR radiation on dust, and eventually develops a rigorous IR-driven accretion disk wind. Here we present the results from the radiation hydrodynamics simulations that take into account the conversion of X-rays into IR with the latter calculated in a flux-limited diffusion approximation. We show that when AGN luminosity, exceeds 0.1 L edd , the outflowing dusty wind provides the obscuration with IR pressure on dust playing a major role. The outer dense and cold part of the flow provides obscuration while the inner hot, and photoionized has properties similar to those of a warm absorber flow. At luminosities ≤0.1 L edd episodes of the outflow are followed by extended periods when the wind switches to slow accretion.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    0
    Citations
    NaN
    KQI
    []