Custom Repair of Mandibular Bone Defects with 3D Printed Bioceramic Scaffolds

2018 
Implanting artificial biomaterial implants into alveolar bone defects with individual shape and appropriate mechanical strength is still a challenge. In this study, bioceramic scaffolds, which can precisely match the mandibular defects in macro and micro, were manufactured by the 3-dimensional (3D) printing technique according to the computed tomography (CT) image. To evaluate the stimulatory effect of the material substrate on bone tissue regeneration in situ in a rabbit mandibular alveolar bone defect model, implants made with the newly developed, mechanically strong ~10% Mg-substituted wollastonite (Ca90%Mg10%SiO3; CSi-Mg10) were fabricated, implanted into the bone defects, and compared with implants made with the typical Ca-phosphate and Ca-silicate porous bioceramics, such as β-tricalcium phosphate (TCP), wollastonite (CaSiO3; CSi), and bredigite (Bred). The initial physicochemical tests indicated that although the CSi-Mg10 scaffolds had the largest pore dimension, they had the lowest porosity mainly...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    52
    Citations
    NaN
    KQI
    []