A study of the spatial and temporal evolution of auto-ignition kernels using time-resolved tomographic OH-LIF

2019 
Abstract In this paper, the spatial and temporal evolution of auto-ignition kernels from methane jets propagating into a NO x -vitiated, high-turbulence, hot air co-flow was studied by means of time-resolved tomographic laser-induced fluorescence of OH (Tomo OH-LIF). Measurements were performed using a burst dye laser system at 10 kHz for volumetric laser illumination and a multi-camera arrangement (8-views) for detection of the fluorescence signal. Auto-ignition kernels were detected three-dimensionally and tracked using a robust algorithm based on the intensity gradient of the volumetrically reconstructed signals. The size and location of the detected kernels were evaluated for operating conditions with different Reynolds numbers of the fuel jet. Results showed that auto-ignition randomly occurred with high probability in a well defined fairly axisymmetric radial region with strong fluctuations in the main direction of the flow. The increase of the Reynolds number of the fuel jet resulted in a radial spread of the location of auto-ignition events. The statistical evaluation of the orientation and growth of auto-ignition kernels with respect to the mean flow field showed that the kernels were oriented tangentially to the flow and temporally evolve towards this preferential direction as the ignition events progressed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    16
    Citations
    NaN
    KQI
    []