Refractory atypical absence seizures in rat: a two hit model

2004 
Abstract Medically refractory seizure disorders in children usually have malignant neurodevelopmental outcomes and often are associated with the presence of congenital cortical dysplasias in the brain. To date, there are no animal models of these disorders by which to test hypotheses of pathogenesis or to screen novel drugs for antiepileptic activity. In rats, treatment with the antimitotic agent methylazoxymethanol acetate (MAM) on gestational day (G) 15 produces a neuronal migration disorder similar to the cortical dysplasias seen in human brain. We sought to produce chronic, recurrent, medically refractory seizures by administration of the cholesterol biosynthesis inhibitor AY-9944 (AY) during postnatal development in rats exposed prenatally to MAM. Prenatal MAM and postnatal AY treatments resulted in spontaneous, recurrent atypical absence seizures that were characterized by bilaterally synchronous slow spike-and-wave discharges (SWD) with a frequency of 6 Hz. The MAM–AY-induced seizures were refractory to ethosuximide, sodium valproate, and the GABA B R antagonist CGP 35348, and were exacerbated by carbamazepine. Histological examination of brains from MAM-treated rats showed hippocampal heterotopias, in addition to atrophy and abnormalities of cortical lamination. The MAM–AY-treated rat represents a reproducible model of refractory atypical absence seizures in children with brain dysgenesis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    25
    Citations
    NaN
    KQI
    []