Non-invasive three-dimensional thickness analysis of oral epithelium based on optical coherence tomography—development and diagnostic performance

2021 
Abstract Objectives Evaluating structural changes in oral epithelium can assist with the diagnosis of cancerous lesions. Two-dimensional (2D) non-invasive optical coherence tomography (OCT) is an established technique for this purpose. The objective of this study was to develop and test the diagnostic accuracy of a three-dimensional (3D) evaluation method. Methods The oral lip mucosa of 10 healthy volunteers was scanned using an 870-nm spectral-domain OCT device (SD-OCT) with enhanced depth imaging (EDI). Four raters semi-automatically segmented the epithelial layer twice. Thus, eighty 3D datasets were created and analyzed for epithelial thickness. To provide a reference standard for comparison, the raters took cross-sectional 2D measurements at representative sites. The correlation between the 2D and 3D measurements, as well as intra- and inter-rater reliability, were analyzed using intraclass correlation coefficients (ICC). Results Mean epithelial thickness was 280 ± 64μm (range 178–500 μm) and 268 ± 49μm (range 163–425 μm) for the 2D and 3D analysis, respectively. The inter-modality correlation of the thickness values was good (ICC: 0.76 [0.626–0.846]), indicating that 3D analysis of epithelial thickness provides valid results. Intra-rater and inter-rater reliability were good (3D analysis) and excellent (2D analysis), suggesting high reproducibility. Conclusions Diagnostic accuracy was high for the developed 3D analysis of oral epithelia using non-invasive, radiation-free OCT imaging. Clinical significance This new 3D technique could potentially be used to improve time-efficiency and quality in the diagnosis of epithelial lesions compared with the 2D reference standard.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    0
    Citations
    NaN
    KQI
    []