A deep learning- and CT image-based prognostic model for the prediction of survival in non-small cell lung cancer.

2021 
Objective To assist clinicians in arranging personalized treatment, planning follow-up programs and extending survival times for non-small cell lung cancer (NSCLC) patients, a method of deep learning combined with computed tomography (CT) imaging for survival prediction was designed. Methods Data were collected from 484 patients from 4 research centers. The data from 344 patients were utilized to build the A_CNN survival prognosis model to classify 2-year overall survival time ranges (730 days cut off). Data from 140 patients, including independent internal and external test sets, were utilized for model testing. First, a series of preprocessing techniques were used to process the original CT images and generate training and test data sets from the axial, coronal, and sagittal planes. Second, the structure of the A_CNN model was designed based on asymmetric convolution, bottleneck blocks, the uniform cross-entropy (UC) loss function, and other advanced techniques. After that, the A_CNN model was trained, and numerous comparative experiments were designed to obtain the best prognostic survival model. Last, the model performance was evaluated, and the predicted survival curves were analyzed. Results The A_CNN survival prognosis model yielded a high patient-level accuracy of 88.8%, a patch-level accuracy of 82.9%, and an area under the receiver operating characteristic (ROC) curve (AUC) of 0.932. When tested on an external data set, the maximum patient-level accuracy was 80.0%. Conclusions The results suggest that using a deep learning method can improve prognosis in patients with NSCLC and has important application value in establishing individualized prognostic models. This article is protected by copyright. All rights reserved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    0
    Citations
    NaN
    KQI
    []