Reduction of aqueous CO_2 to 1-Propanol at MoS_2 electrodes

2018 
Reduction of carbon dioxide in aqueous electrolytes at single-crystal MoS_2 or thin-film MoS_2 electrodes yields 1-propanol as the major CO_2 reduction product, along with hydrogen from water reduction as the predominant reduction process. Lower levels of formate, ethylene glycol, and t-butanol were also produced. At an applied potential of −0.59 V versus a reversible hydrogen electrode, the Faradaic efficiencies for reduction of CO_2 to 1-propanol were ∼3.5% for MoS2single crystals and ∼1% for thin films with low edge-site densities. Reduction of CO_2 to 1-propanol is a kinetically challenging reaction that requires the overall transfer of 18 e– and 18 H+ in a process that involves the formation of 2 C–C bonds. NMR analyses using ^(13)CO_2 showed the production of ^(13)C-labeled 1-propanol. In all cases, the vast majority of the Faradaic current resulted in hydrogen evolution via water reduction. H_2S was detected qualitatively when single-crystal MoS_2 electrodes were used, indicating that some desulfidization of single crystals occurred under these conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []