Impact of head modeling and sensor types in localizing human gamma-band oscillations.

2014 
: An effective mechanism in neuronal communication is oscillatory neuronal synchronization. The neuronal gamma-band (30-100 Hz) synchronization is associated with attention which is induced by a certain visual stimuli. Numerous studies have shown that the gamma-band activity is observed in the visual cortex. However, impact of different head modeling techniques and sensor types to localize gamma-band activity have not yet been reported. To do this, the brain activity was recorded using 306 magnetoencephalography (MEG) sensors, consisting of 102 magnetometers and 102 pairs of planar gradiometers (one measuring the derivative of the magnetic field along the latitude and the other along the longitude), and the data were analyzed with respect to time, frequency, and location of the strongest response. The spherical head models with a single-shell and overlapping spheres (local sphere) have been used as a forward model for calculating the external magnetic fields generated from the gamma-band activity. For each sensor type, the subject-specific frequency range of the gamma-band activity was obtained from the spectral analysis. The identified frequency range of interest with the highest gamma-band activity is then localized using a spatial-filtering technique known as dynamic imaging of coherent sources (DICS). The source analysis for all the subjects revealed that the gradiometer sensors which measure the derivative along the longitude, showed sources close to the visual cortex (cuneus) as compared to the other gradiometer sensors which measure the derivative along the latitude. However, using the magnetometer sensors, it was not possible to localize the sources in the region of interest. When comparing the two head models, the local-sphere model helps in localizing the source more focally as compared to the single-shell head model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    2
    Citations
    NaN
    KQI
    []