Synthesis and characterization of LiFe1−xMnxPO4 (x = 0.25, 0.50, 0.75) lithium ion battery cathode synthesized via a melting process

2020 
Abstract Compared to large-scale solid-state and hydrothermal methods, melt synthesis is a simple, fast and low-cost method to synthesize cathode materials with high quality and high electrochemical results. In this paper, melt synthesis is used for the first time to synthesize electrochemically active LiFe1-xMnxPO4 (x = 0.25, 0.50, 0.75) cathode materials with high electrochemical performance. The structure, the morphology and the electrochemical performance of LiFe1-xMnxPO4 materials were characterized using X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and galvanostatic charge/discharge cycling. The properties of LiFe1-xMnxPO4 materials synthesized by the molten-state process were compared with those of LiFe1-xMnxPO4 materials synthesized by the well-known solid-state process. The obtained results show that molten- and solid-state syntheses provide similar performances in terms of discharge capacity, capacity retention and rate capability, and even better in the case of LiFe0.25Mn0.75PO4 made from melt synthesis (142 mAh g−1 vs. 130 mAh g−1). This paper offers new perspectives for the large-scale production of high potential cathode materials using melting process that could compete with the current synthetic techniques.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    5
    Citations
    NaN
    KQI
    []