Keap1: one stone kills three birds Nrf2, IKKβ and Bcl-2/Bcl-xL.

2012 
Abstract Oxidative stress, implicated in the etiology of cancer, results from an imbalance in the production of Reactive Oxygen Species (ROS) and cell’s own antioxidant defenses. As a oxidative stress sensor, Keap1 functions as both an adaptor for Cul3⋅Rbx1 E3 ligase complex mediated degradation of the transcription factor Nrf2, and a master regulator of cytoprotective gene expression. Although Nrf2 is a well known substrate for Keap1, the DGR domain of Keap1 has been reported also to bind other proteins directly or indirectly. IKKβ as positive regulator of NF-κB is also destabilized by Keap1, which resulted in inhibiting NF-κB-derived tumor promotion. In addition, anti-apoptotic Bcl-2/Bcl-xL protein was identified as another substrate for the Keap1-Cul3-E3 ligase complex. Keap1 led to the repression and destabilization of Bcl-2, decreased Bcl-2:Bax heterodimers and facilitated cancer cells apoptosis. Given that Keap1 might function as a tumor suppressor protein to mitigate tumor progression, the different kinds of Keap1 somatic mutations were detected in numerous cancer cells. Therefore, it is important to understand the Keap1-involved signaling cascades. This review primarily focuses on the prevention of tumorigenesis role of Keap1 through negative regulation of three substrates Nrf2, IKKβ and Bcl-2/Bcl-xL, with emphasis on the recent findings indicating the cancer guarder function of Keap1.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    89
    References
    77
    Citations
    NaN
    KQI
    []