Small-angle X-ray scattering for the proteomics community: current overview and future potential.

2021 
Introduction: Proteins are biological nanoparticles. For structural proteomics and hybrid structural biology, complementary methods are required that allow both high throughput and accurate automated data analysis. Small-angle X-ray scattering (SAXS) is a method for observing the size and shape of particles, such as proteins and complexes, in solution. SAXS data can be used to model both the structure, oligomeric state, conformational changes, and flexibility of biomolecular samples.Areas covered: The key principles of SAXS, its sample requirements, and its current and future applications for structural proteomics are briefly reviewed. Recent technical developments in SAXS experiments are discussed, and future potential of the method in structural proteomics is evaluated.Expert opinion: SAXS is a method suitable for several aspects of integrative structural proteomics, with current technical developments allowing for higher throughput and time-resolved studies, as well as the analysis of complex samples, such as membrane proteins. Increasing automation and streamlined data analysis are expected to equip SAXS for structure-based screening workflows. Originally, structural genomics had a heavy focus on folded, crystallizable proteins and complexes - SAXS is a method allowing an expansion of this focus to flexible and disordered systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    96
    References
    0
    Citations
    NaN
    KQI
    []